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Abstract.

In this paper it is shown how specification of behavioural requirements from informal to formal
can be integrated within knowledge engineering. The integration of requirements specification
has addressed, in particular: the integration of requirements acquisition and specification with
ontology acquisition and specification, the relations between requirements specifications and
specifications of task models and problem solving methods, and the relation of requirements
specification to verification.

1 Introduction

Requirements Engineering (RE) addresses the development and validation of methods for
eliciting, representing, analysing, and confirming system requirements and with methods for
transforming requirements into more formal specifications for design and implementation.
Requirements Engineering is one of the early but important phases in the software
development life cycle and numerous studies have revealed the misidentification of
requirements as one of the most significant sources of customer dissatisfaction with delivered
systems (Davis, 1993; Sommerville & Sawyer, 1997; Kotonya and Sommerville, 1998).
However, it isadifficult process, asit involves the dicitation, analysis and documentation of
knowledge from multiple stakeholders of the system. There is an increased need to involve
the users at this stage of the development life-cycle (Clavadetscher, 1998; Standish-Group,
1995). It is recognised that the users are the experts in their work and a thorough
understanding of the requirements is achieved only by promoting effective communication
with them during the requirements engineering process (Beyer and Holtzblatt, 1995). It is
also argued that an effective requirements definition requires involvement and mutual control
of the process by al players, and that a good partnership between users and designers enables
a high quality of the resulting system (Holtzblatt and Beyer, 1995).

Requirements express intended properties of the system, and scenarios specify use-cases
of the intended system (i.e., examples of intended user interaction traces), usually employed
to clarify requirements. The process of requirements engineering within software
development is an iterative process, in which a sharp borderline between defining
requirements and constructing the system design is not aways easy to draw. When an
effective stakeholder-developer communication link is in place, on the basis of a (partialy)
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constructed design description d the system, additional information may be dicited from the
stakeholders (i.e.,, domain experts, users, system customers, managers), and more detail ed
requirements and scenarios can be developed which refer to this design description.
Requirements can be expressed in various degrees of formality, ranging from unstructured
informal representations (usualy during initial requirements aaquisition) to more structured
semi-formal representations and formal representations.

The interlearing d the process of requirements engineaing and the processof designis
emphasised in current reseacch in the aeaof Al & Desgn (e.g., (Gero and Sudweeks, 1996
1998), in which it is put forward that redistic design pocesses include both the
manipulation d requirement spedficaions and the manipulation o design ohed
speafications, resulting in a detail ed description d adesign ojed and a good un@rstanding
of the requirements. This perspedive on design, applied in particular to the design o
knowledge-intensive software, is employed throughou the paper. Thisisin contrast with the
tradition in software elgineaing to separate the adivity of manipulating software
requirements from the ‘design o software’, the ad¢ua construction d the system design
(Jadkson 1975 Sommerville 1985 Sage and Palmer 1995 Booch 1991 Vliet 1993
Pressman 1997.

Principled model-based methoddogies for knowledge engineaing, such as DESIRE
(Brazer, Jonker and Treur, 1998 Braazer, Treur, Wijngaads and Willems, 1999 and
CommonKADS (Schreiber, Wielinga, Akkermans, Velde and Hoog, 1994 or MIKE (Angele,
Fensel, Landes, and Studer, 1998, the emphasisis on spedficaion d the (conceptua) model
of the system being developed and nd on spedficaion d required behaviour properties of a
system to be developed. A transparent distinction between spedficaion d the structure of a
system (or task or problem solving method) and its (behavioural) propertiesis not made. For
example, in the Al and Design community a spedficaion d the structure of a design ohed
is often dstingushed from a spedficaion d function or behaviour; eg., (Gero and
Sudweeks, 1996 1998. In recent reseach in knovledge engineeing, identificaion and
formalisation d properties of knowledge-intensve systems is addressed, usudly in the
context of verificaion a competence awssnent (Cornelisen, Jonker and Treur, 1997
Fensel, 1995 Fensael and Benjamins, 1996 Fensel, Schoregge, Groenboan and Wielinga,
1996. Such properties can be used as a basis for requirement spedficaions. In this paper it
is s1own how spedficaion d behavioural requirements from informal to forma can be
integrated within knowledge engineeing.

From the basic ingredients in knowledge engineaing methoddogies the following are
espedadly relevant to the integration d requirements gedficaion. knowledge leve
approadhes to problem solving methods (e.g., (Fensel, 1995), ontologies (e.g., (Musen,
1998) and verification (e.g., (Cornélisen, Jonker and Treur, 1997). It has to be defined
how requirements gedficaion relates to these basic ingredients. Therefore, integration o
requirements gedficaion within a principled knovledge engineaing methoddogy hes to
address in particular:

» behavioural requirements and ontologies

integration d requirements acquisition and spedficaion with ortology aqquisition and
spedaficaion

» behavioural requirements and compositionality

relations between requirements gedficaions and spedficaions of task models with
tasks and problem solving methods at diff erent levels of (procesg compaosition,

» behavioural requirements and verification

relation d requirements gedficaionto verificaion



These aspects are addressed in this paper. The different forms of representation of
requirements and scenarios are presented in Section 2, for reasons of presentation illustrated
by a smple example. In Section 3 refinement of requirements related to different proces
abstraction levels (e.g., asin task or task/method hierarchies) is addressed. Section 4 briefly
summarizes the relations between requirements and scenarios. Section 5 concludes the paper
with adiscussion.

2 Representation of Requirements and Scenarios

In the approach presented in this paper, the processes of requirements engineering and
system development are integrated by a careful specification of the co-operation between the
two. The manipulation process of a set of requirements and scenarios, and the manipulation
process of a design object description (i.e., a description of the system) are intertwined in the
following way: first the set of requirements and scenarios is made as precise as possible. This
requires multiple interaction with and among the stakeholders. Based on that set a possible
(partial) description is made of the system. The description of the system is used not only to
validate the understanding of the current set of requirements and scenarios, but also to elicit
additional information from the stakeholders. This leads to more requirements and scenarios
and to more detailed requirements and scenarios. The process continues, alternating between
manipulating a set of requirements and scenarios, and manipulating a description of a system.
Adeguate representations of requirements and scenarios are required for each part of the
overall process, and, therefore, the relations between the different representation forms of the
same requirement or scenario need to be carefully documented.

One of the underlying assumptions on the approach presented in this paper is that a
compositional design method will lead to designs that are transparent, maintainable, and can
be (partially) reused within other designs. The construction of a compositional design
description of the system that properly respects the requirements and scenarios entails
making choices between possible solutions and possible system configurations. Such choices
can be made during the manipulation of the set of requirements and scenarios, but aso
during the manipulation of the design object description. Each choice corresponds to an
abstraction level. For each component of the system design further requirements and
scenarios are necessary to ensure that the combined system satisfies the overall system
requirements and scenarios. The different abstraction levels in requirements are reflected as
levels of process abstraction in the design description during the manipulation of the
compositional design description.

Different representations of requirements and scenarios are discussed in Sections 2.1 to
2.3. The use of process abstraction levels is explained further in Section 3. An overview of
the relations between representations of requirements and scenarios, and different levels of
process abstraction is presented in Section 4.

In Requirements Engineering the role of scenarios, in addition to requirements, has gained
more importance, both in academia and industry practice (Erdmann and Studer, 1998;
Weidenhaupt, Pohl, Jarke, and Haumer, 1998). Scenarios or use cases are examples of
interaction sessions between the users and the system (Potts et al, 1994, Weidenhaupt et al.,
1998); they are often used during the requirement engineering, being regarded as effective
ways of communicating with the stakeholders (i.e., domain experts, users, system customers,
managers, and developers). The initial scenarios can serve to verify (i.e., check the validity in
a formal manner) the requirements specification and (later) the system prototypes. Evaluating



the prototypes helps detecting misunderstandings between the domain experts and system
designers if, for example, the system designers made the wrong abstractions based on the
initial scenarios. In our approach requirements and scenarios both are explicitly represented,
and play a role of equal importance. Having them both in a requirements engineering
process, provides the possibility of mutual comparison: the requirements can be verified
against the scenarios, and the scenarios can be verified against the requirements. By this
mutual verification process, ambiguities and inconsistencies within and between the existing
requirements or scenarios may be identified, but also the lack of requirements or scenarios:
scenarios may be identified for which no requirements were formulated yet, and
requirements may be identified for which no scenarios were formulated yet.

As stated above, requirements and scenarios are seen as effective ways of communicating
with the stakeholders. This can only be true if requirements and scenarios are represented in
a well-structured and easy to understand manner and are precise enough and detailed enough
to support the development process of the system. Unfortunately, no standard language exists
for the representation of requirements and scenarios. Formats of varying degrees of formality
are used in different approaches (Pressman, 1997). Informally represented requirements and
scenarios are often best understood by the stakeholders (although also approaches exist using
formal representations of requirements in early stages as well (Dubois, Yu and Petit, 1998)).
Therefore, continual participation of stakeholders in the process is possible. A drawback is
that the informal descriptions are less appropriate when they are used as input to actually
construct a system design. On the other hand, an advantage of using formal descriptions is
that they can be manipulated automatically in a mathematical way, for example in the context
of verification and the detection of inconsistencies. Furthermore, the process of formalising
the representations contributes to disambiguation of requirements and scenarios (in contact
with stakeholders). At the same time however, aformal representation is less appropriate as a
communication means with the stakeholders. Therefore, in our approach in the overdl
development process, different representations and relations between them are used: informal
or structured semi-formal representations (obtained during the process of formalisation) in
contact with stakeholders and designers of the system, and related formal representations to
be used by the designers during the construction of the design.

Independent of the measure of formality, each requirement and each scenario can be
represented in a number of different ways, and/or using different representation languages.
Examples are given below. When manipulating requirements and scenarios, different
activities can be distinguished (see Figure 1):

* requirements and scenarios are elicited from the stakeholders, and checked for
ambiguities and inconsistencies; they are reformulated in a more precise or more
structured form, and represented in different forms (informal, semi-formal, and formal)
to suit different purposes like communication with stakeholders or the construction of a
design description,

» they arerefined across process abstraction levels (which is addressed in Section 3).
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Figure 1. Representations from informal to formal

2.1 Informal representations

Different informal representations can be used to express the same requirement or scenario.
Representations can be made, for example, in a graphical representation language, or a
natural language, or in combinations of these languages. Scenarios, for instance, can be
represented using a format that supports branching points in the process, or in alanguage that
only takes linear structures into account. A ssmple example of a requirement r1 on a system
to control achemical processis the following:

Requirement R1
For situations that the temperature and pressure are high the system
shall give a red alert and turn the heater off.

A requirement is a general statement about the (required) behaviour of the system to be
designed. This statement is required to hold for every instance of behaviour of the system. In
contrast to this, a scenario is a description of a behaviour instance (e.g., to be read as an
instance of a system trace the system has to show, given the user behaviour in the scenario).
An example of an informal representation of a scenariois:

Scenario S1
The temperature and pressure are high.
A red alert is generated and the heater is turned off.

Note that this scenario describes one of the behaviour instances for which requirement r1
holds.

2.2 Structured semi-formal representations

Both requirements and scenarios can be reformulated to more structured and precise forms.

Requirements. To check requirements for ambiguities and inconsistencies, an analysis that
seeks to identify the parts of a given requirement formulation that refer to the input and
output of the system is useful. Such an analysis often provokes a reformulation of the
requirement into a more structured form, in which the input and output references are made
explicitly visble in the structure of the formulation. Moreover during such an analysis
process the concepts that relate to input can be identified and distinguished from the concepts
that relate to the output of the system. Possibly the requirement splits in a natura manner



into two or more smpler requirements. This often leads to a number of new (representations
of) requirements and/or scenarios. For example, the following requirement may be found as a
result of such an anayss.

Requirement R1.1:

at any point in time

if the system received input that the temperature is high and the pressure is high

then the system shall generate as output a red alert and an indication that the situation is explosive,
and after the user gives an input that it has to be resolved, the system gives output that the heater is
turned off

A reformulation can lead to structured requirements in a semi-formal form that provide more
detail, for example rR1 can be reformulated to r1.1, but aso to two parts:

Requirement Rla.1:

at any point in time

if the system received input that the temperature is high and the pressure is high

then the system shall generate as output a red alert and an indication that the situation is explosive

Requirement R1b.1:
at any point in time
if the system provided as output an indication that the situation is explosive and after this the user

gave an input that it has to be resolved,
then the system shall generate output that the heater is turned off

Requirement Ria.1 can aso be represented graphically, for example, by (here each of the
pairs of arrows means that both arrows of the pair occur at the same time):

red alert
situation is explosive

temperature is high

pressure is high

As a specific case, aso requirements referring only to input or only to output can be
encountered. For requirements formulated in such a structured manner the following
classification can be made:

* requirements on input only, independent of output (input requirements),

* requirements on output only, independent of input (output requirements), and

requirements relating output to input

The latter type of requirements can be categorised as:

output is dependent on input (input-output-dependency): function or behaviour

requirement,
input is dependent on output (output-input-dependency): environmental requirement or
assumption



When stating properties of the eavironment (which includes users) of the system (output-
inpu-dependency), the term ‘requirement’ is avoided and the term *assumption’ is used: the
environment is not within the scope of the software development; it canna be ‘tuned’ to
exhibit particular properties. As such, only assumptions can be made on its behaviour and
properties. The term ‘requirements’ is used for those parts of the system that are within the
scope of designable parts of the system.
In addition, requirements can be cdegorised acording to the kind d properties they

refer to:

» dtatic requirements, or

* dynamic requirements.

For nontrivia dynamic requirements a temporal structure has to be refleded in the
representation. This entail s that terms uch as ‘at any pdnt in time’, ‘at an ealier point in
time', ‘after’, ‘before’, ‘since, ‘until’, ‘next’ are used to clarify the tempora relationships
between dfferent fragments in the requirement.

The inpu and ouput terms used in the structured reformulations form the basis of an
ontology d input and ouput concepts. Construction d this ontology takes placeduring the
reformulation d requirements. aayuisition d a (domain o task or method) ontology is
integrated within requirements engineeing (requirements engineaing contributes at least to
part of the ontology aaquisition). For the requirements engineaing pocessit isvery useful to
construct an ortology d inpu and ouput concepts. For example, in Rib.1 the concepts
indicaed below in bdd can be aquired.

Requirement R1b.1:
at any point in time
if the system provided as output
an indication that the situation is explosive,
and after this the user gave an input
that it has to be resolved,
then the system shall generate output
that the heater is turned off

This ontology later fadlit ates the formalisation d requirements and scenarios, as the inpu
and ouput concepts are drealy defined.
In summary, to oltain a structured semi-formal representation d a requirement, the
followingisto be performed:
» explicitly distingush input and output concepts in the requirement formulation
 define (domain and task/method) ontologies for input and ouput information
 classify the requirement acording to the cdegories above
* make the temporal structure of the statement explicit using words like, ‘at any pant in
time', ‘at an ealier paint intime', ‘after’, ‘before’, ‘since, ‘until’, ‘next’.

Scenarios. For scenarios, a structured semi-formal representation is obtained by performing
the foll owing:

» explicitly distinguish input and output conceptsin the scenario description

 define (domain) ontologies for the inpu and ouput information

» represent the tempora structure described implicitly in the sequence of events.



The scenario s1 shown ealier is reformulated into a structured semi-formal representation
S1.1:

Scenario S1.1

- input: temperature is high, pressure is high
- output: red alert, situation is explosive

- input: to be resolved

- output: heater is turned off

Notice that from this senario, which covers both requirements given abowe, it is not clea
whether or not aways an inpu to be resolved leads to the heder being turned off,
independent of what preceded this inpu, or whether this $1oud ony happen when the
history adually was as described in the first two lines of the scenario. If the second part of
the scenario is meant to be history independent, this ssond prt is better spedfied as a
Separate scenario. However, we asaume that in this example & least the previous output of
the system situation is explosive onwhich the user reads is a ondtionfor the seand prt of
the scenario (as also expressd in the requirements above). These considerations leal to the
splitting d scenario s1.1 into the foll owing two (temporally) independent scenarios sia.1 and
Sib.1:

Scenario Sla.l
- input: temperature is high, pressure is high
- output: red alert, situation is explosive

Scenario S1b.1

- output: situation is explosive
- input: to be resolved
- output: heater is turned off

2.3 Formal representations

A formdisation d a scenario can be made by using formal ontologies for the inpu and
output, and by formalising the sequence of events as a temporal trace Thus a forma
temporal model is obtained, for example & defined in (Cornelissen, Jonker and Treur, 1997,
Brazer, Treur, Wijngaads and Willems, 1999. To oltain forma representations of
requirements, the input and ouput ontologies have to be dhosen as formal ontologies. In the
example this can be done, for example by formalising a conceptua relation d the form Ais B,
with as meaning that the objed A has property B, in a predicate form: B(A); for example ‘the
gtuation is explosve is formaised by explosive(situation), wWhere situation iS an ojed and
explosive @ predicate. This format can be used within an appropriate subset or extenson o
predicae logic. For example, requirement Ria.l can also be represented formaly in
combined symbadlic and gaphica form by the following:

temperature(high)

explosive(situation)

pressure(high)



In addition, the tempora structure, if present in a semi-formal representation, has to be
expressed in a formal manner. Using the formal ontologies, and a formalisation of the
temporal structure, a mathematical language is obtained to formulate formal requirement
representations. The semantics are based on compositional information states which evolve
over time. An information state 1 of a component D is an assignment of truth values {true,
false, unknown} to the set of ground atoms that play a role within b. The compositiond
structure of D is reflected in the structure of the information state. The set of al possible
information states of D is denoted by I1S(D). A trace #/ of a omporent D is a sequence of
information states (MY o N in 1S(D).

The Tempora TraceLanguage TTL is alanguage in the family of languages to which also
situation cdculus (McCarthy and Hayes, 1969, event cdculus (Kowalski and Sergat, 1986,
and fluent cdculus (Holldoder and Thielscher, 1990 belong It is defined as follows. Given
atracea of comporent b, the information state of the input interfaceof comporent c at time
point t of the comporent b is denated by statep(#/ |, t, input(C)), where C is either b or a sub-
comporent of b. Analogowdy, statep(M, t, output(C)), denctes the information state of the
output interface of comporent ¢ at time point t of the cmporent b. These formalised
information states can be related to statements via the formally defined satisfadion relation
|=, comparable to the Holds-predicae in stuation cdculus. Behavioural properties can be
formulated in a forma manner, using guantifiers over time and the usual logicd conredives
such as nat, &, [0 . An aternative formal representation d temporal properties (using modal
and temporal operators) within Temporal Multi-Epistemic Logic can be foundin (Engelfriet,
Jonker and Treur, 1998. For example, in TTL the requirement Rib.1 can be represented
formaly by:

Requirement R1b.2:
Oa , t [stateg(,t, input(S)) |= to_be resolved &
0'<t stateg(®, ', output(S)) |= explosive(situation) O
Ot">t stateg(#, t, output(S)) |= turn_off(heater) ]

In this formalisation o Rib.1 the word “after” is represented by indicaing that the time point
t a which to_be_resolved appeaed onthe inpu is greaer than some time paint t at which the
system reported that the Situation is explosive onits outpu.

Scenario s1.1 can be represented formaly by the temporal model that is defined as
foll ows:

Scenario S1.2:

stateg(a4, 1, input(S)) |= high(temperature)
stateg(a4, 1, input(S)) |= high(pressure)
stateg(#, 2, output(S))  |= explosive(situation)
stateg(#, 2, output(S))  |= red_alert
stateg(#, 3, input(S)) |= to_be_resolved
stateg(#, 4, output(S))  |= turn_off(heater)

To summarise, formalisation d arequirement or scenario onthe basis of a structured semi-
formal representationisacieved by.

» choasing formal ontologiesfor the inpu and ouput information

» formalisation d the temporal structure



This results in a tempora formula r for a requirement and in a tempora model i for a
scenario.

Checking a temporal formula, which formally represents a requirement, against a
temporal model, formally representing a scenario, means that formal verification of
requirements against scenarios can be done by model checking. A formal representation m of
a scenario s and a formal representation F of a requirement are compatible if the tempora
formulais true in the model. For example, the temporal formula R1b.2 isindeed true for the
model s1.2: the explosive situation occurred at time point 2 in the scenario, at time point 3
(which islater than 2) the system received input to_be_resolved, and at time point 4 (again later
than 3), the system has as output turn_off(heater).

However, requirement rR1ib.2 would also be true in the following two scenarios. Scenario
s2 is an example of a situation in which the system turns off the heater when this is not
appropriate, scenario s3 is an example of a stuation in which the system waits too long
before it turns off the heater (which might lead to an explosion).

Scenario S2

The temperature and the pressure are high

The system generates a red alert and turns off the heater,
The temperature and the pressure are medium

The temperature is low and the pressure is medium

The system turns off the heater

Scenario S3

The temperature and the pressure are high

The system generates a red alert and turns off the heater,
The system increases the heater

The system increases the heater

An explosion occurs

The system turns off the heater

Furthermore, the requirement would also be true in a scenario in which the system waited
with turning off the heater, maybe even first increasing the heater for some time (scenario
S4).

Scenario S4

The temperature and the pressure are high

The system indicates an explosive situation and a red alert
The user indicates that the situation is to be resolved

The system increases the heater

The system again increases the heater

An explosion occurs

The system turns off the heater.

Thislast scenario has semi-formal scenario s4.1 and is formalised as scenario s4.2:

Scenario S4.1

- input: temperature high
pressure high

- output: explosive situation
red alert

- input: to be resolved

- output: increase heater

- output: increase heater

10



- input: explosion occurred
- output: turn off heater.

Scenario S4.2:

stateg(a4, 1, input(S)) = high(temperature)
stateg(a4, 1, input(S)) = high(pressure)
stateg (a4, 2, output(S)) = explosive(situation)
stateg(a, 2, output(S)) = red_alert

stateg (a4, 3, input(S)) = to_be_resolved
stateg (s, 4, output(S)) = increase(heater)
stateg(a, 5, output(S)) = increase(heater)
stateg (a4, 6, input(S)) = occurred(explosion)
stateg(a, 7, output(S)) = turn_off(heater)

In ather words, requirement R1ib.2 leares too many passhiliti es for the system’s behaviour,
and, being a formaisation d Rib.1, so do the requirements that form the reason for
formulating rR1b.1, i.e., R1a.1, and R1.1. During the requirement engineeing processthis has
to be resolved in contad with the stakehdlders. In this case, the semi-formal rR1.1 and R1a.1,
and the formal rR1b.2 have to be reformulated: after a discusson with the stakeholders, rR1.1 is
reformulated into:

Requirement R1.2:

at any point in time

if the system received input that the temperature is high and the pressure is high

then at the next point in time the system shall generate as output a red alert and an indication that the

situation is explosive, and at the next point in time after the user gives an input that it has to be
resolved, the system gives output that the heater is turned off

And requirement R1b.1 isreformulated into:

Requirement R1b.3:
at any point in time
if the system provided as output
an indication that the situation is explosive,
and at the next time point after the user gave an input
that the situation has to be resolved,
then the system shall generate output
that the heater is turned off

Based on these reformulations (that also affed the ontologies), the requirement engineas
made the foll owing representation o Rib.2 in TTL:

Requirement R1b.4:

Ot | stateg(, t, input(S)) |= to_be_resolved(situation) &
stateg(a, prev(t), output(S)) |= explosive(situation) O
stateg(a, succ(t), output(S)) |= turn_off(heater) ]

Requirement R1b.4 is true in scenario s1.2 (let prev be the function: n -> n-1 and succ: n ->
n+1), but is not true in the sketched unwanted scenarios like s3.1.

11



3 Requirements Refinement and Process Composition L evels

The requirements engineering process considers the system as a whole, in interaction with its
stakeholders. However, during a design process, often a form of structuring of the system is
used: sub-processes are distinguished, for example in relation to development or selection of
atask or task/method hierarchy. For the processes at the next lower process abstraction level,
also requirements can be expressed. Thus a distinction is made between stakeholder
requirements and stakeholder scenarios (for the top level of the system, elicited from
stakeholders, such as users, customers) and designer requirements and designer scenarios
(for the lower process abstraction levels, constructed by requirement engineers and
designers). Designer requirements and scenarios are dependent on a description of the
system. Requirements on properties of a sub-component of a system reside at a next lower
level of process abstraction compared to the level of requirements on properties of the system
itself; often sets of requirements at alower level are chosen in such away that they reaise a
next higher level requirement. This defines a process abstraction level refinement relation
between requirements. These process abstraction refinement relationships can also be used to
verify requirements. e.g., if the refinements of a requirement to the next lower process
abstraction level al hold for a given system description, then the refined requirement can be
proven to hold for that system description. Similarly, scenarios can be refined to lower
process abstraction levels by adding the interactions between the sub-processes. At each level
of abstraction, requirements and scenarios employ the terminology defined in the ontology
for that level. In the example used above, for the structured semi-formal requirements two
processes can be distinguished:

interpret process info
input information of type: temperature is high, pressure is high
output information of type: situation is explosive

generate actions
input information of type: situation is explosive
output information of type: red alert, heater is turned off

process
abstraction
level 0

process process
refinement refinement
relations relations

LIEREER AR ER
. refine

process AR
abstraction refine

| requirements
level n U ;m:;q,, -

ik
d

. | scenario
relations between il J

requirements and scenarios

Figure 2. Process abstraction level refinements

At the next lower abstraction level of these two processes the following requirements can be
formulated, as arefinement of the requirements given earlier:
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interpret processinfo (IPI)

Requirement R1int.1:

at any point in time

if the component received input that the temperature is high and the pressure is high
then the component shall generate as output an indication that the situation is explosive

generate actions (GA)

Requirement Rlacta.l:

at any point in time

if the component received input that the situation is explosive ,
then the component shall generate as output a red alert

Requirement Rlactb.1:

at any point in time

if the component received input that the situation is explosive,

and after this it received an input that it has to be resolved,

then the component shall generate output that the heater is turned off

The semi-formal requirements Riint.1, Rlacta.1, and Riactb.1 are reformulated in the forma
requirements R1int.2, Rlacta.2, and Riactb.2, respectively. These formal requirements are given
below:

Requirement R1int.2:
Ot [ stateg(, t, input(IPI)) = high(temperature) & high(pressure) O
stateg(a, succ(t), output(IPl)) = explosive(situation) ]

Requirement Rlacta.2:
Ot | stateg(, t, input(GA)) = explosive(situation) O

stateg(a, succ(t), output(GA)) = red_alert]

Requirement Rlactb.2:

Oa t [ stateg(a, prev(t), input(GA)) |= explosive(situation) &
stateg(#, t, input(GA))  |= to_be_resolved |
stateg(a, succ(t), output(GA)) |= turn_off(heater) ]

Furthermore, scenarios s1a.1 and Sib.1 given earlier can be refined to

Scenario Slinta.l

- system input: temperature is high,
pressure is high
- interpret process info input: temperature is high,
pressure is high
- interpret process info output: situation is explosive
- generate actions input: situation is explosive
- generate actions output: red alert
- system output: situation is explosive,
red alert
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Scenario Slintb.1
- system output: situation is explosive
- system input: to be resolved
- generate actions input: to be resolved
- generate actions output: heater is turned off
- system output: heater is turned off

The semi-formal scenarios Siinta.1 and Siintb.1 are reformulated into formal scenarios Siinta.2
and siintb.2, respectively. These formal scenarios are shown below:

Scenario Slinta.2:

stateg(a4, 1, input(S)) |= high(temperature) & high(pressure)
stateg(#, 2, input(IPl))  |= high(temperature) & high(pressure)
stateg(#, 3, output(IP1)) |= explosive(situation)
stateg(#1, 4, input(GA))  |= explosive(situation)
stateg(#, 5, output(GA)) |= red_alert

stateg(#, 6, output(S))  |= explosive(situation) & red_alert

Scenario Slintb.2:

stateg(a 1, 1, output(S)) |= explosive(situation)

stateg(#, 2, input(S)) |= to_be_resolved
stateg(#, 3, input(GA))  |= to_be_resolved
stateg(#, 4, output(GA)) |= turn_off(heater)

stateg(#, 5, output(S))  |= turn_off(heater)

4 Traceability Relations for Requirements and Scenarios

As requirements and scenarios form the basis for communication among stakeholders
(including the system developers), it is important to maintain a document in which the
requirements and scenarios are organised and structured in a comprehensive way. This
document is aso important for maintenance of the system once it has been taken into
operation. Due to the increase in system complexity nowadays, more complex requirements
and scenarios result in documents that are more and more difficult to manage. The different
activities in requirements engineering lead to an often large number of inter-related
representations of requirements and scenarios.

In this section an overview is given of the traceability relations, after which the
traceability relations in the example are shown, and finally the use of traceability relations
for verification is described.

4.1  Overview of traceability relations

The explicit representation of these traceability relations is useful in keeping track of the
connections; traceability relationships can be made explicit:

* among requirements at the same process abstraction level (Figure 1),

* between requirements at different process abstraction levels (Figure 2),

* among scenarios at the same process abstraction level (Figure 1),

* between scenarios at different process abstraction levels (Figure 2),
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* between requirements and scenarios at the same processabstradion level (Figures 1, 2
and 3

* amongrequirements at the same level of formality (Figure 3)

» between requirements and scenarios at the same level of formality (Figure 3).

7\)

T formal ‘ formal
requirements © scenarios il

A
semi-formal
equirements

e

;;;;;;;;;;

process
abstraction
level 1

informal
scenarios

informal
requirements

*)

process
refinement
relations A, A ——
refined semi-formal refined semi-formal
» requiirgmentsi - - scenarios »

g T
refined informal | refined informal
requirements scenarios

Figure 3. Tracedility relations

process
abstraction
level n

relations between
requirements and scenarios

These relationships are often adequately spedfied using hygerlinks. This off ers tracedility;
i.e., relating relevant requirements and scenarios as well as the posshility to ‘jump’ to
definitions of relevant requirements and scenarios. Thus requirements and scenarios resulting
from an extensve cae-study have been paceal in a hyperlinked structure (Herlea Jonker,
Treur and Wijngaads, 1998; seeFigure 3, which combines Figures 1 and 2

4.2  Traceability relationsfor the example

The diagram shown in Figure 3 can be used to depict the airrent relationships of the
requirements and scenarios. In Figure 4 the relationships are depicted which are explained in
Sedion 2 right up to the point when RrRib.2 is determined to be incorred. In this figure
aternative reformulations are shown for both r1 and si1: for example r1 can be reformulated
into r1.1, but aso in two requirements Ria.1 and rR1b.1. The foll owing relationships between
requirements and scenarios hald (not depicted in Figure 4):

requirement R1 is true in scenario S1

requirement R1.1 is true in scenario S1.1

requirement R1a.l is true in scenario Sla.1 (not shown)
requirement R1b.1 is true in scenario S1b.1 (not shown)
requirement R1b.2 is true in scenario S1.2

requirement R1b.2 is true in scenario S4.2 (unwanted scenario)

15



process ‘om\a\
abstraction
level 1

R1b.2 2

= s12 |y S42 |

SIbT
1/P'{Sla.1 s41

\
'\(\"0“(\a

Figure 4. Traceability relationships depicting the situation when R1b.2 is determined to be incorrect.

After the discovery of the incorrect requirement Rib.2 a number of requirements is
reformulated, resulting in the situation depicted in Figure 5. The requirements R1.2, R1b.3 and
R1b.4 replace requirements R1.1, Rib.1 and Rib.2 of Figure 4, respectively. The following
rel ationships between requirements and scenarios hold in Figure 5:

requirement R1 is true in scenario S1

requirement R1.2 is true in scenario S1.1

requirement Rla.l is true in scenario Sla.1 (not shown)
requirement R1b.3 is true in scenario S1b.1 (not shown)
requirement R1b.4 is true in scenario S1.2

requirement R1b.4 is not true in scenario S4.2 (unwanted scenario).

process
abstraction
level 1

((\‘\'/ o -
e\

Figure 5. Traceability relationships depicting the correct requirements and scenarios.

Figure 6 depicts the relations between requirements and scenarios at different levels of
process abstraction. As shown, requirement R1.2 at process abstraction level 1 is refined into
requirements Riint.1, Rlacta.1, and Riactb.1 at process abstraction level 2. The same holds for
the set of requirements consisting of R1a.1 and R1b.3: these are refined by the same set of
requirements as R1.2. The scenarios Sia.1 and Sib.1 at process abstraction level 1 are refined
by the scenarios sinta.1 and Siintb.1 at process abstraction level 2, respectively. At process
abstraction level the semi-formal scenarios Siinta.l1 and Siintb.1 are reformulated into the
formal scenarios Siinta.2 and Siintb.2, respectively.
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Figure 6. Tracedility relationships for two levels of processabstradion.

4.3  Traceability relations and verification

Verificaion d requirements and scenarios is fadlitated by keeuing tradk of tracedility
relations. Tracedility relations over processabstradion levels (verticd diredionin Figure 3)
enable a ompositional approadch to verificaion: requirements and scenarios at a spedfic
process abstradion level are verified in terms of requirements and scenarios at the next
(lower) process abstradion level (Cornelissen, Jonker and Treur, 1997). Requirements and
scenarios which are nat further decompaosed in requirements and scenarios at a lower process
abstradion level are considered to be ‘primitive’, and read to be verified in the spedficaion
of the system. Idedly these requirements and scenarios are eaer to verify than the more
complex, broadly stated requirements and scenarios higher up in the proces abstradion
levels.

Example of ‘vertical’ verification.
When requirements R1lint.1, Rlacta.1 and Rlactb.1 are all fulfilled, then it can be concluded that
requirement R1.2 is also fulfilled.

Tracedility relations among requirements and scenarios at one process abstradion level
(horizontal diredion in Figure 3) enable verificaion d requirements and scenarios in terms
of ead aher. Scenarios can be amployed to verify requirements, requirements can be
employed to verify scenarios, isolated requirements and scenarios can be deteded, et ceera

Examples of ‘horizontal’ verification.

When the formal scenario S1.2 is fulfilled, then it can be concluded that the semi-formal scenario
S1b.1 is also fulfilled.

The scenario S2 is an ‘isolated’ scenario: it is not related to any requirement.

The informal scenario S2 is an ‘unreformulated’ scenario: it is not related to a semi-formal scenario.
Verification of requirement R1b.2 against the (unwanted) scenarios (e.g., S4.2) caused the
reformulation of that requirement, resulting in requirement R1b.3.
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5 Discussion

Requirements describe the required properties of a system (this includes the functions of the
system, structure of the system, static properties, and dynamic properties). In applications to
agent-based systems, the dynamics or behaviour of the system plays an important role in
description of the successful operation of the system. Requirements specification has both to
be informal or semi-forma (to be able to discuss them with stakeholders) and forma (to
disambiguate and analyse them and establish whether or not a constructed model for a system
satisfies them). Typical software requirements engineering practices are geared toward the
development of aformal requirements specification.

Requirements Engineering is today a well-studied field of research within Software
Engineering; e.g., (Davis, 1993; Sommerville and Sawyer, 1997; Kontonya, and
Sommerville, 1998). In recent years requirements engineering for distributed and agent
systems has been studied, e.g., in (Dardenne, Lamsweerde, and Fickas, 1993; Dubois, Du
Bois, and Zeippen, 1995). The requirements specification language ALBERT |1 (Dubois, Du
Bois, and Zeippen, 1995; Dubois, Yu, and Petit, 1998), based on real-time tempora logic,
has been developed for the area of real-time distributed systems, but has been tuned to the
agent perspective as well. Reusable requirements patterns play an important role. In
(Dardenne, Lamsweerde, and Fickas, 1993; Darimont, and Lamsweerde, 1996; Lamsweerde,
Darimont, and Letier, 1998) the KAOS approach to Requirements Engineering of composite
systems is described. In this approach a requirement for the overall system is called a goal.
What is called a requisite is a requirement on part of the dynamics controllable by a single
agent or (given) environment component. Goal refinement is used to decompose goals into
requisites via AND/OR graphs. This can be compared to our notion of requirements
refinement over process abstraction levels. The term assumption is used to indicate requisites
on (given) environmental components.

The process of making requirements more precise is supported by using both semi-formal
and formal representations for requirements. Part of this processis to relate concepts used in
requirements to input and output of the system. Since requirement specifications need
system-related concepts, it has been shown how the acquisition and specification of
requirements goes hand in hand with the acquisition and specification of ontologies.
Examples of known properties (based on ontologies) that can be related to requirements are:
properties of problem solving methods for diagnosis (Benjamins, 1993; Cornelissen, Jonker
and Treur, 1997), properties of propose-and-revise problem solving methods (Fensel and
Motta, 1998).

The formalisation of behaviour requirements has to address the semantics of the evolution
of the system (input and output) states over time. In this paper the semantics of properties of
compositional systems is based on the temporal semantics approach, which can be found in
the development of a compositional verification method for knowledge-intensive systems,
for diagnostic process models see (Cornelissen, Jonker and Treur, 1997); for co-operative
information gathering agents, see (Jonker and Treur, 1998); for negotiating agents, see
(Brazier, Cornelissen, Gustavsson, Jonker, Lindeberg, Polak and Treur, 1998). By adopting
the semantical approach underlying the compositiona verification method, a direct
integration of requirements engineering with the specification of properties of problem
solving methods and their verification could easily be established.

The temporal trace language TTL used in our approach is much more expressive than
standard or extended modal tempora logics as described, for example, in (Fisher, 1994;
Clarke, Grumberg, and Peled, 2000; Manna and Pnueli, 1995; Stirling, 2001), in a number of

18



respeds. In the first place it has order-sorted predicate logic expressvity, whereas the
standard temporal logics are propasitional. Secondy, the explicit referenceto time points and
time durations offers the possbility of modelling the dynamics of red-time phenomena,
which may be useful for the development of knowledge-based systems for red-time
applicaions, just as the languages ALBERT Il and KAOS discussed above ae.

Third, the possbility to quantify over traces allows for spedficaion d more complex
dynamics. As within most temporal logics, readivenessand pro-adivenessproperties can be
spedfied. In addition, in ou language dso properties expressng dff erent types of adaptive
behaviour can be expressed. For example an adaptive property such as ‘exercise improves
skill’, or ‘the better the experiences, the higher the trust’ (trust monaonicity) which bah are
a relative property in the sense that it involves the comparison d two aternatives for the
history. This type of adaptive property can be expressed in ou languege, whereas in standard
forms of tempora logic different aternative histories canna be @mpared. The same
difference gplies to stuation cdculus (McCarthy and Hayes, 1969, event cdculus
(Kowalski and Sergot, 1986, and fluent cdculus (Hdlldoder and Thielscher, 1990.
Therefore TTL is more suitable for requirements gedficaion within the development of
adaptive knowledge-based systems, than standard temporal logics, or KAOS, ALBERT Il or
these other caculi mentioned.

Fourth, in TTL it is possble to define local languages for parts of a system. Espedally in a
compositional approach to Knowledge Engineaing as in DESIRE, the distinctions between
components, and between input and output and internal languages are aucia, and are
supported by the language, which also entails the posshility to quantify over system parts and
changing system parts over time;, for example, this alows for spedficaion of system
configuration modificaion over time; cf. (Dastani, Jonker and Treur, 2001).

For some example systems requirements and scenarios have been dicited, analysed,
manipulated, and formali sed. The lesons leaned from these cae studies are:

» The processof achieving an undxrstanding d arequirement involves alarge number of
different formulations and representations, gradually evolving from informal to semi-
formal and formal.

» Scenarios and their formali sation are, compared to requirements, of equal importance

» Caegorisation d requirements on inpu, output and function a behaviour
requirements, and dstingushing these from assuumptions on the environment clarifies
the overal picture.

» Groupng requirements and scenarios in clusters gives a more global insight.

« Keguing trak on the various relations between dfferent representations of
requirements, between requirements and clusters, between requirements and scenarios,
and many cahers, is suppated by hyperlink spedficaions within a requirements
document.

In current and future reseach, further integration d requirements engineaing in the
compositional design method for multi-agent systems, DESIRE and, in particular, in its
software environment is addressed.
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