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Abstract.  
In this paper it is shown how specification of behavioural requirements from informal to formal 
can be integrated within knowledge engineering. The integration of requirements specification 
has addressed, in particular: the integration of requirements acquisition and specification with 
ontology acquisition and specification, the relations between requirements specifications and 
specifications of task models and problem solving methods, and the relation of requirements 
specification to verification. 

1  Introduction 

Requirements Engineering (RE) addresses the development and validation of methods for 
eliciting, representing, analysing, and confirming system requirements and with methods for 
transforming requirements into more formal specifications for design and implementation. 
Requirements Engineering is one of the early but important phases in the software 
development life cycle and numerous studies have revealed the misidentification of 
requirements as one of the most significant sources of customer dissatisfaction with delivered 
systems (Davis, 1993; Sommerville & Sawyer, 1997; Kotonya and Sommerville, 1998). 
However, it is a difficult process, as it involves the elicitation, analysis and documentation of 
knowledge from multiple stakeholders of the system. There is an increased need to involve 
the users at this stage of the development life-cycle (Clavadetscher, 1998; Standish-Group, 
1995). It is recognised that the users are the experts in their work and a thorough 
understanding of the requirements is achieved only by promoting effective communication 
with them during the requirements engineering process (Beyer and Holtzblatt, 1995). It is 
also argued that an effective requirements definition requires involvement and mutual control 
of the process by all players, and that a good partnership between users and designers enables 
a high quality of the resulting system (Holtzblatt and Beyer, 1995).  
 Requirements express intended properties of the system, and scenarios specify use-cases 
of the intended system (i.e., examples of intended user interaction traces), usually employed 
to clarify requirements. The process of requirements engineering within software 
development is an iterative process, in which a sharp borderline between defining 
requirements and constructing the system design is not always easy to draw. When an 
effective stakeholder-developer communication link is in place, on the basis of a (partially) 
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constructed design description of the system, additional information may be elicited from the 
stakeholders (i.e., domain experts, users, system customers, managers), and more detailed 
requirements and scenarios can be developed which refer to this design description. 
Requirements can be expressed in various degrees of formality, ranging from unstructured 
informal representations (usually during initial requirements acquisition) to more structured 
semi-formal representations and formal representations. 
 The interleaving of the process of requirements engineering and the process of design is 
emphasised in current research in the area of AI & Design (e.g., (Gero and Sudweeks, 1996, 
1998)), in which it is put forward that realistic design processes include both the 
manipulation of requirement specifications and the manipulation of design object 
specifications, resulting in a detailed description of a design object and a good understanding 
of the requirements. This perspective on design, applied in particular to the design of 
knowledge-intensive software, is employed throughout the paper. This is in contrast with the 
tradition in software engineering to separate the activity of manipulating software 
requirements from the ‘design of software’ , the actual construction of the system design 
(Jackson 1975, Sommervill e 1985, Sage and Palmer 1995, Booch 1991, Vliet 1993, 
Pressman 1997). 
 Principled model-based methodologies for knowledge engineering, such as DESIRE 
(Brazier, Jonker and Treur, 1998; Brazier, Treur, Wijngaards and Will ems, 1999) and 
CommonKADS (Schreiber, Wielinga, Akkermans, Velde and Hoog, 1994) or MIKE (Angele, 
Fensel, Landes, and Studer, 1998), the emphasis is on specification of the (conceptual) model 
of the system being developed and not on specification of required behaviour properties of a 
system to be developed. A transparent distinction between specification of the structure of a 
system (or task or problem solving method) and its (behavioural) properties is not made. For 
example, in the AI and Design community a specification of the structure of a design object 
is often distinguished from a specification of function or behaviour; e.g., (Gero and 
Sudweeks, 1996, 1998). In recent research in knowledge engineering, identification and 
formalisation of properties of knowledge-intensive systems is addressed, usually in the 
context of verification or competence assessment (Cornelissen, Jonker and Treur, 1997; 
Fensel, 1995, Fensel and Benjamins, 1996; Fensel, Schonegge, Groenboom and Wielinga, 
1996). Such properties can be used as a basis for requirement specifications. In this paper it 
is shown how specification of behavioural requirements from informal to formal can be 
integrated within knowledge engineering.  
 From the basic ingredients in knowledge engineering methodologies the following are 
especially relevant to the integration of requirements specification: knowledge level 
approaches to problem solving methods (e.g., (Fensel, 1995)), ontologies (e.g., (Musen, 
1998)) and verification (e.g., (Cornelissen, Jonker and Treur, 1997)). It has to be defined 
how requirements specification relates to these basic ingredients. Therefore, integration of 
requirements specification within a principled knowledge engineering methodology has to 
address, in particular: 

• behavioural requirements and ontologies 
integration of requirements acquisition and specification with ontology acquisition and 
specification 

• behavioural requirements and compositionality 
relations between requirements specifications and specifications of task models with 
tasks and problem solving methods at different levels of (process) composition, 

• behavioural requirements and verification 
relation of requirements specification to verification 
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These aspects are addressed in this paper. The different forms of representation of 
requirements and scenarios are presented in Section 2, for reasons of presentation illustrated 
by a simple example. In Section 3 refinement of requirements related to different proces 
abstraction levels (e.g., as in task or task/method hierarchies) is addressed. Section 4 briefly 
summarizes the relations between requirements and scenarios. Section 5 concludes the paper 
with a discussion. 

2  Representation of Requirements and Scenarios 

In the approach presented in this paper, the processes of requirements engineering and 
system development are integrated by a careful specification of the co-operation between the 
two. The manipulation process of a set of requirements and scenarios, and the manipulation 
process of a design object description (i.e., a description of the system) are intertwined in the 
following way: first the set of requirements and scenarios is made as precise as possible. This 
requires multiple interaction with and among the stakeholders. Based on that set a possible 
(partial) description is made of the system. The description of the system is used not only to 
validate the understanding of the current set of requirements and scenarios, but also to elicit 
additional information from the stakeholders. This leads to more requirements and scenarios 
and to more detailed requirements and scenarios. The process continues, alternating between 
manipulating a set of requirements and scenarios, and manipulating a description of a system. 
Adequate representations of requirements and scenarios are required for each part of the 
overall process, and, therefore, the relations between the different representation forms of the 
same requirement or scenario need to be carefully documented. 
 One of the underlying assumptions on the approach presented in this paper is that a 
compositional design method will lead to designs that are transparent, maintainable, and can 
be (partially) reused within other designs. The construction of a compositional design 
description of the system that properly respects the requirements and scenarios entails 
making choices between possible solutions and possible system configurations. Such choices 
can be made during the manipulation of the set of requirements and scenarios, but also 
during the manipulation of the design object description. Each choice corresponds to an 
abstraction level. For each component of the system design further requirements and 
scenarios are necessary to ensure that the combined system satisfies the overall system 
requirements and scenarios. The different abstraction levels in requirements are reflected as 
levels of process abstraction in the design description during the manipulation of the 
compositional design description.  
 Different representations of requirements and scenarios are discussed in Sections 2.1 to 
2.3. The use of process abstraction levels is explained further in Section 3. An overview of 
the relations between representations of requirements and scenarios, and different levels of 
process abstraction is presented in Section 4. 
 In Requirements Engineering the role of scenarios, in addition to requirements, has gained 
more importance, both in academia and industry practice (Erdmann and Studer, 1998; 
Weidenhaupt, Pohl, Jarke, and Haumer, 1998). Scenarios or use cases are examples of 
interaction sessions between the users and the system (Potts et al, 1994, Weidenhaupt et al., 
1998); they are often used during the requirement engineering, being regarded as effective 
ways of communicating with the stakeholders (i.e., domain experts, users, system customers, 
managers, and developers). The initial scenarios can serve to verify (i.e., check the validity in 
a formal manner) the requirements specification and (later) the system prototypes. Evaluating 
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the prototypes helps detecting misunderstandings between the domain experts and system 
designers if, for example, the system designers made the wrong abstractions based on the 
initial scenarios. In our approach requirements and scenarios both are explicitly represented, 
and play a role of equal importance. Having them both in a requirements engineering 
process, provides the possibility of mutual comparison: the requirements can be verified 
against the scenarios, and the scenarios can be verified against the requirements. By this 
mutual verification process, ambiguities and inconsistencies within and between the existing 
requirements or scenarios may be identified, but also the lack of requirements or scenarios: 
scenarios may be identified for which no requirements were formulated yet, and 
requirements may be identified for which no scenarios were formulated yet. 
 As stated above, requirements and scenarios are seen as effective ways of communicating 
with the stakeholders. This can only be true if requirements and scenarios are represented in 
a well-structured and easy to understand manner and are precise enough and detailed enough 
to support the development process of the system. Unfortunately, no standard language exists 
for the representation of requirements and scenarios. Formats of varying degrees of formality 
are used in different approaches (Pressman, 1997). Informally represented requirements and 
scenarios are often best understood by the stakeholders (although also approaches exist using 
formal representations of requirements in early stages as well (Dubois, Yu and Petit, 1998)). 
Therefore, continual participation of stakeholders in the process is possible. A drawback is 
that the informal descriptions are less appropriate when they are used as input to actually 
construct a system design. On the other hand, an advantage of using formal descriptions is 
that they can be manipulated automatically in a mathematical way, for example in the context 
of verification and the detection of inconsistencies. Furthermore, the process of formalising 
the representations contributes to disambiguation of requirements and scenarios (in contact 
with stakeholders). At the same time however, a formal representation is less appropriate as a 
communication means with the stakeholders. Therefore, in our approach in the overall 
development process, different representations and relations between them are used: informal 
or structured semi-formal representations (obtained during the process of formalisation) in 
contact with stakeholders and designers of the system, and related formal representations to 
be used by the designers during the construction of the design. 
 Independent of the measure of formality, each requirement and each scenario can be 
represented in a number of different ways, and/or using different representation languages. 
Examples are given below. When manipulating requirements and scenarios, different 
activities can be distinguished (see Figure 1): 

• requirements and scenarios are elicited from the stakeholders, and checked for 
ambiguities and inconsistencies; they are reformulated in a more precise or more 
structured form, and represented in different forms (informal, semi-formal, and formal) 
to suit different purposes like communication with stakeholders or the construction of a 
design description, 

• they are refined across process abstraction levels (which is addressed in Section 3). 
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Figure 1.  Representations from informal to formal 

2.1 Informal representations 

Different informal representations can be used to express the same requirement or scenario. 
Representations can be made, for example, in a graphical representation language, or a 
natural language, or in combinations of these languages. Scenarios, for instance, can be 
represented using a format that supports branching points in the process, or in a language that 
only takes linear structures into account. A simple example of a requirement R1 on a system 
to control a chemical process is the following: 
 

Requirement R1 
 For situations that the temperature and pressure are high the system  
shall give a red alert and turn the heater off. 

 
A requirement is a general statement about the (required) behaviour of the system to be 
designed. This statement is required to hold for every instance of behaviour of the system. In 
contrast to this, a scenario is a description of a behaviour instance (e.g., to be read as an 
instance of a system trace the system has to show, given the user behaviour in the scenario). 
An example of an informal representation of a scenario is: 
 

 Scenario S1  
 The temperature and pressure are high.  
 A red alert is generated and the heater is turned off. 

 
Note that this scenario describes one of the behaviour instances for which requirement R1 
holds. 

2.2 Structured semi-formal representations   

Both requirements and scenarios can be reformulated to more structured and precise forms. 
 
Requirements. To check requirements for ambiguities and inconsistencies, an analysis that 
seeks to identify the parts of a given requirement formulation that refer to the input and 
output of the system is useful. Such an analysis often provokes a reformulation of the 
requirement into a more structured form, in which the input and output references are made 
explicitly visible in the structure of the formulation. Moreover during such an analysis 
process the concepts that relate to input can be identified and distinguished from the concepts 
that relate to the output of the system. Possibly the requirement splits in a natural manner 
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into two or more simpler requirements. This often leads to a number of new (representations 
of) requirements and/or scenarios. For example, the following requirement may be found as a 
result of such an analysis: 
 

 Requirement R1.1: 
 at any point in time 
 if the system received input that the temperature is high and the pressure is high  
 then the system shall generate as output a red alert and an indication that the situation is explosive, 
and after the user gives an input that it has to be resolved, the system gives output that the heater is 
turned off 

 
A reformulation can lead to structured requirements in a semi-formal form that provide more 
detail, for example R1 can be reformulated to R1.1, but also to two parts: 
 

 Requirement R1a.1: 
 at any point in time 
 if the system received input that the temperature is high and the pressure is high  
 then the system shall generate as output a red alert and an indication that the situation is explosive 

 
 Requirement R1b.1: 
 at any point in time 
 if the system provided as output an indication that the situation is explosive and after this the user 
gave an input that it has to be resolved,  
then the system shall generate output that the heater is turned off 

 
Requirement R1a.1 can also be represented graphically, for example, by (here each of the 
pairs of arrows means that both arrows of the pair occur at the same time): 

system

temperature is high red alert

pressure is high situation is explosive

 
  
As a specific case, also requirements referring only to input or only to output can be 
encountered. For requirements formulated in such a structured manner the following 
classification can be made: 

• requirements on input only, independent of output (input requirements),  
• requirements on output only, independent of input (output requirements), and  
• requirements relating output to input 

 
The latter type of requirements can be categorised as:  

• output is dependent on input (input-output-dependency): function or behaviour 
requirement,  

• input is dependent on output (output-input-dependency): environmental requirement or 
assumption  
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When stating properties of the environment (which includes users) of the system (output-
input-dependency), the term ‘requirement’ is avoided and the term ‘assumption’ is used: the 
environment is not within the scope of the software development; it cannot be ‘ tuned’ to 
exhibit particular properties. As such, only assumptions can be made on its behaviour and 
properties. The term ‘requirements’ is used for those parts of the system that are within the 
scope of designable parts of the system. 
  In addition, requirements can be categorised according to the kind of properties they 
refer to:  

• static requirements, or  
• dynamic requirements. 

 
For nontrivial dynamic requirements a temporal structure has to be reflected in the 
representation. This entails that terms such as ‘at any point in time’ , ‘at an earlier point in 
time’ , ‘after’ , ‘before’ , ‘ since’ , ‘until ’ , ‘next’ are used to clarify the temporal relationships 
between different fragments in the requirement. 
 The input and output terms used in the structured reformulations form the basis of an 
ontology of input and output concepts. Construction of this ontology takes place during the 
reformulation of requirements: acquisition of a (domain or task or method) ontology is 
integrated within requirements engineering (requirements engineering contributes at least to 
part of the ontology acquisition). For the requirements engineering process it is very useful to 
construct an ontology of input and output concepts. For example, in R1b.1 the concepts 
indicated below in bold can be acquired. 
 

 Requirement R1b.1: 
 at any point in time 
 if the system provided as output  
  an indication that the situation is explosive,  
and after this the user gave an input  
  that it has to be resolved,  
then the system shall generate output  
  that the heater is turned off 

  
This ontology later facilit ates the formalisation of requirements and scenarios, as the input 
and output concepts are already defined.  
 In summary, to obtain a structured semi-formal representation of a requirement, the 
following is to be performed: 

• explicitl y distinguish input and output concepts in the requirement formulation 
• define (domain and task/method) ontologies for input and output information 
• classify the requirement according to the categories above 
• make the temporal structure of the statement explicit using words like, ‘at any point in 

time’ , ‘at an earlier point in time’ , ‘after’ , ‘before’ , ‘ since’ , ‘until ’ , ‘next’ . 
 
Scenarios. For scenarios, a structured semi-formal representation is obtained by performing 
the following: 

• explicitl y distinguish input and output concepts in the scenario description 
• define (domain) ontologies for the input and output information 
• represent the temporal structure described implicitl y in the sequence of events. 
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The scenario S1 shown earlier is reformulated into a structured semi-formal representation 
S1.1: 
 

Scenario S1.1 
 -  input:   temperature is high, pressure is high 
 -  output:  red alert, situation is explosive 
 -  input:  to be resolved 
 -  output:  heater is turned off  

 
Notice that from this scenario, which covers both requirements given above, it is not clear 
whether or not always an input to be resolved leads to the heater being turned off , 
independent of what preceded this input, or whether this should only happen when the 
history actually was as described in the first two lines of the scenario. If the second part of 
the scenario is meant to be history independent, this second part is better specified as a 
separate scenario. However, we assume that in this example at least the previous output of 
the system situation is explosive on which the user reacts is a condition for the second part of 
the scenario (as also expressed in the requirements above). These considerations lead to the 
splitti ng of scenario S1.1 into the following two (temporally) independent scenarios S1a.1 and 
S1b.1: 
 

Scenario S1a.1 
 -  input:  temperature is high, pressure is high 
 -  output:  red alert, situation is explosive 

 
Scenario S1b.1 
 -  output:  situation is explosive  
 -  input: to be resolved 
 -  output: heater is turned off  

2.3 Formal representations 

A formalisation of a scenario can be made by using formal ontologies for the input and 
output, and by formalising the sequence of events as a temporal trace. Thus a formal 
temporal model is obtained, for example as defined in (Cornelissen, Jonker and Treur, 1997; 
Brazier, Treur, Wijngaards and Will ems, 1999). To obtain formal representations of 
requirements, the input and output ontologies have to be chosen as formal ontologies. In the 
example this can be done, for example by formalising a conceptual relation of the form A is B, 
with as meaning that the object A has property B, in a predicate form: B(A); for example ‘ the 
situation is explosive’ is formalised by explosive(situation), where situation is an object and 
explosive a predicate. This format can be used within an appropriate subset or extension of 
predicate logic. For example, requirement R1a.1 can also be represented formally in 
combined symbolic and graphical form by the following: 

system

temperature(high) red alert

pressure(high) explosive(situation)
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In addition, the temporal structure, if present in a semi-formal representation, has to be 
expressed in a formal manner. Using the formal ontologies, and a formalisation of the 
temporal structure, a mathematical language is obtained to formulate formal requirement 
representations. The semantics are based on compositional information states which evolve 
over time. An information state   of a component D is an assignment of truth values {true, 

false, unknown} to the set of ground atoms that play a role within D. The compositional 
structure of D is reflected in the structure of the information state. The set of all possible 
information states of D is denoted by IS(D). A  trace  

�
 of a component  D  is a sequence of 

information states (Mt)t ∈ N  in  IS(D).  
 The Temporal Trace Language TTL is a language in the family of languages to which also 
situation calculus (McCarthy and Hayes, 1969), event calculus (Kowalski and Sergot, 1986), 
and fluent calculus (Hölldobler and Thielscher, 1990) belong. It is defined as follows. Given 
a trace �  of component D, the information state of the input interface of component C at time 
point t of the component D is denoted by stateD(� , t, input(C)), where C is either D or a sub-
component of D. Analogously, stateD(� , t, output(C)), denotes the information state of the 
output interface of component C at time point t of the component D. These formalised 
information states can be related to statements via the formally defined satisfaction relation 
|=, comparable to the Holds-predicate in situation calculus. Behavioural properties can be 
formulated in a formal manner, using quantifiers over time and the usual logical connectives 
such as not, &, ⇒. An alternative formal representation of temporal properties (using modal 
and temporal operators) within Temporal Multi -Epistemic Logic can be found in (Engelfriet, 
Jonker and Treur, 1998). For example, in TTL the requirement R1b.1 can be represented 
formally by: 
 

 Requirement R1b.2: 
∀ � t    [ stateS(� , t, input(S))    |=  to_be_resolved   &  

   ∃t’ < t     stateS(� , t’, output(S)) |=  explosive(situation) ⇒  

     ∃ t”>t   stateS(� , t, output(S))   |=  turn_off(heater) ] 

 
In this formalisation of R1b.1 the word “after” is represented by indicating that the time point 
t at which to_be_resolved appeared on the input is greater than some time point t’ at which the 
system reported that the situation is explosive on its output.  
 Scenario S1.1 can be represented formally by the temporal model that is defined as 
follows: 
 

 Scenario S1.2: 
stateS(� , 1, input(S))  |=  high(temperature) 

stateS(� , 1, input(S))  |= high(pressure)  

stateS(� , 2, output(S))  |= explosive(situation) 

stateS(� , 2, output(S))  |=  red_alert 

stateS(� , 3, input(S))  |= to_be_resolved 

stateS(� , 4, output(S))  |= turn_off(heater) 

 
To summarise, formalisation of a requirement or scenario on the basis of a structured semi-
formal representation is achieved by: 

• choosing formal ontologies for the input and output information 
• formalisation of the temporal structure 
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This results in a temporal formula  for a requirement and in a temporal model  for a 
scenario. 
 Checking a temporal formula, which formally represents a requirement, against a 
temporal model, formally representing a scenario, means that formal verification of 
requirements against scenarios can be done by model checking. A formal representation M of 
a scenario S and a formal representation F of a requirement are compatible if the temporal 
formula is true in the model. For example, the temporal formula R1b.2 is indeed true for the 
model S1.2: the explosive situation occurred at time point 2 in the scenario, at time point 3 
(which is later than 2) the system received input to_be_resolved, and at time point 4 (again later 
than 3), the system has as output turn_off(heater). 
 However, requirement R1b.2 would also be true in the following two scenarios. Scenario 
S2 is an example of a situation in which the system turns off the heater when this is not 
appropriate, scenario S3 is an example of a situation in which the system waits too long 
before it turns off the heater (which might lead to an explosion).  
 

Scenario S2 
The temperature and the pressure are high 
The system generates a red alert and turns off the heater,  
The temperature and the pressure are medium 
The temperature is low and the pressure is medium 
The system turns off the heater 

 
Scenario S3 
The temperature and the pressure are high 
The system generates a red alert and turns off the heater,  
The system increases the heater 
The system increases the heater 
An explosion occurs 
The system turns off the heater 

 
Furthermore, the requirement would also be true in a scenario in which the system waited 
with turning off the heater, maybe even first increasing the heater for some time (scenario 
S4).  
 

Scenario S4 
The temperature and the pressure are high 
The system indicates an explosive situation and a red alert 
The user indicates that the situation is to be resolved 
The system increases the heater 
The system again increases the heater 
An explosion occurs 
The system turns off the heater. 

 
This last scenario has semi-formal scenario S4.1 and is formalised as scenario S4.2: 
 

Scenario S4.1 
 - input:  temperature high 
     pressure high 
 - output:  explosive situation 
     red alert 
 - input:  to be resolved 
 - output:  increase heater 
 - output:  increase heater 
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 - input:  explosion occurred 
 - output:  turn off heater. 

 
 Scenario S4.2: 
stateS(� , 1, input(S))  |=  high(temperature)  

stateS(� , 1, input(S))  |=  high(pressure) 

stateS(� , 2, output(S))  |=  explosive(situation) 

stateS(� , 2, output(S))  |=  red_alert 

stateS(� , 3, input(S))  |=  to_be_resolved 

stateS(� , 4, output(S))  |=  increase(heater) 

stateS(� , 5, output(S))  |=  increase(heater) 

stateS(� , 6, input(S))  |=  occurred(explosion) 

stateS(� , 7, output(S))  |=  turn_off(heater) 

 
In other words, requirement R1b.2 leaves too many possibiliti es for the system’s behaviour, 
and, being a formalisation of R1b.1, so do the requirements that form the reason for 
formulating R1b.1, i.e., R1a.1, and R1.1. During the requirement engineering process this has 
to be resolved in contact with the stakeholders. In this case, the semi-formal R1.1 and R1a.1, 
and the formal R1b.2 have to be reformulated: after a discussion with the stakeholders, R1.1 is 
reformulated into: 
 

 Requirement R1.2: 
 at any point in time 
 if the system received input that the temperature is high and the pressure is high  
 then at the next point in time the system shall generate as output a red alert and an indication that the 
situation is explosive, and at the next point in time after the user gives an input that it has to be 
resolved, the system gives output that the heater is turned off 

 
And requirement R1b.1 is reformulated into: 
 

 Requirement R1b.3: 
 at any point in time 
 if the system provided as output  
  an indication that the situation is explosive,  
and at the next time point after the user gave an input  
  that the situation has to be resolved,  
then the system shall generate output  
  that the heater is turned off 

 
Based on these reformulations (that also affect the ontologies), the requirement engineers 
made the following representation of R1b.2 in TTL: 
 

 Requirement R1b.4: 
∀��� t    [            stateS(� , t, input(S))    |=  to_be_resolved(situation)   &  

  stateS(� , prev(t), output(S))  |=  explosive(situation)  ⇒  

  stateS(� , succ(t), output(S))   |=  turn_off(heater) ] 

 
Requirement R1b.4 is true in scenario S1.2 (let prev be the function: n -> n-1 and succ: n -> 
n+1), but is not true in the sketched unwanted scenarios like S3.1. 
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3  Requirements Refinement and Process Composition Levels 

The requirements engineering process considers the system as a whole, in interaction with its 
stakeholders. However, during a design process, often a form of structuring of the system is 
used: sub-processes are distinguished, for example in relation to development or selection of 
a task or task/method hierarchy. For the processes at the next lower process abstraction level, 
also requirements can be expressed. Thus a distinction is made between stakeholder 
requirements and stakeholder scenarios (for the top level of the system, elicited from 
stakeholders, such as users, customers) and designer requirements and designer scenarios 
(for the lower process abstraction levels, constructed by requirement engineers and 
designers). Designer requirements and scenarios are dependent on a description of the 
system. Requirements on properties of a sub-component of a system reside at a next lower 
level of process abstraction compared to the level of requirements on properties of the system 
itself; often sets of requirements at a lower level are chosen in such a way that they realise a 
next higher level requirement. This defines a process abstraction level refinement relation 
between requirements. These process abstraction refinement relationships can also be used to 
verify requirements: e.g., if the refinements of a requirement to the next lower process 
abstraction level all hold for a given system description, then the refined requirement can be 
proven to hold for that system description. Similarly, scenarios can be refined to lower 
process abstraction levels by adding the interactions between the sub-processes. At each level 
of abstraction, requirements and scenarios employ the terminology defined in the ontology 
for that level. In the example used above, for the structured semi-formal requirements two 
processes can be distinguished:  
 

interpret process info  
  input information of type: temperature is high, pressure is high 
  output information of type: situation is explosive  

 
generate actions 
  input information of type: situation is explosive  
  output information of type: red alert, heater is turned off 

requirements scenarios

refined 
requirements

refined  
scenarios

     process  
abstraction  
      level 0

   process  
abstraction  
      level n

     process 
refinement 
    relations

relations between 
requirements and scenarios

 process 
 refinement 
 relations

 
Figure 2.  Process abstraction level refinements 

 
At the next lower abstraction level of these two processes the following requirements can be 
formulated, as a refinement of the requirements given earlier: 
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interpret process info (IPI) 
 

 Requirement R1int.1: 
 at any point in time 
 if the component received input that the temperature is high and the pressure is high  
 then the component shall generate as output an indication that the situation is explosive  

 
generate actions (GA) 
 

 Requirement R1acta.1: 
 at any point in time 
 if the component received input that the situation is explosive , 
 then the component shall generate as output a red alert 

 
 Requirement R1actb.1: 
 at any point in time 
 if the component received input that the situation is explosive,  
and after this it received an input that it has to be resolved,  
then the component shall generate output that the heater is turned off 

 
The semi-formal requirements R1int.1, R1acta.1, and R1actb.1 are reformulated in the formal 
requirements R1int.2, R1acta.2, and R1actb.2, respectively. These formal requirements are given 
below: 
 

 Requirement R1int.2: 
∀���  t   [               stateS(� , t, input(IPI))    |=  high(temperature)   & high(pressure) ⇒ 

  stateS(� , succ(t), output(IPI))   |=  explosive(situation) ] 

 
 Requirement R1acta.2: 
∀��� t    [            stateS(� , t, input(GA))    |=  explosive(situation) ⇒ 

  stateS(� , succ(t), output(GA))   |=  red_alert ] 

 
 Requirement R1actb.2: 
∀���  t   [    stateS(� , prev(t), input(GA))    |=  explosive(situation) & 

               stateS(� , t, input(GA))   |=  to_be_resolved ⇒ 

  stateS(� , succ(t), output(GA))   |=  turn_off(heater) ] 

 
Furthermore, scenarios S1a.1 and S1b.1 given earlier can be refined to 
 

Scenario S1inta.1 
 -  system input:   temperature is high,  
      pressure is high 
   -  interpret process info input: temperature is high, 
        pressure is high 
   -  interpret process info output: situation is explosive  
   -  generate actions input:  situation is explosive  
   -  generate actions output:  red alert 
 -  system output:   situation is explosive,  
      red alert 
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Scenario S1intb.1 
 -  system output:   situation is explosive 
 -  system input:  to be resolved 
   -  generate actions input:   to be resolved 
   -  generate actions output:  heater is turned off 
 -  system output:  heater is turned off 

 
The semi-formal scenarios S1inta.1 and S1intb.1 are reformulated into formal scenarios S1inta.2 
and S1intb.2, respectively. These formal scenarios are shown below: 
 

 Scenario S1inta.2: 
stateS(� , 1, input(S))  |=  high(temperature)  & high(pressure) 

stateS(� , 2, input(IPI))  |=  high(temperature)  & high(pressure) 

stateS(� , 3, output(IPI))  |=  explosive(situation) 

stateS(� , 4, input(GA))  |=  explosive(situation) 

stateS(� , 5, output(GA))  |=  red_alert 

stateS(� , 6, output(S))  |=  explosive(situation) & red_alert 

 
 Scenario S1intb.2: 
stateS(� , 1, output(S))  |=  explosive(situation) 

stateS(� , 2, input(S))  |=  to_be_resolved 

stateS(� , 3, input(GA))  |=  to_be_resolved 

stateS(� , 4, output(GA))  |=  turn_off(heater) 

stateS(� , 5, output(S))  |=  turn_off(heater) 

4  Traceability Relations for Requirements and Scenarios 

As requirements and scenarios form the basis for communication among stakeholders 
(including the system developers), it is important to maintain a document in which the 
requirements and scenarios are organised and structured in a comprehensive way. This 
document is also important for maintenance of the system once it has been taken into 
operation. Due to the increase in system complexity nowadays, more complex requirements 
and scenarios result in documents that are more and more difficult to manage. The different 
activities in requirements engineering lead to an often large number of inter-related 
representations of requirements and scenarios.  
 In this section an overview is given of the traceability relations, after which the 
traceability relations in the example are shown, and finally the use of traceability relations 
for verification is described. 

4.1 Overview of traceability relations 

The explicit representation of these traceability relations is useful in keeping track of the 
connections; traceability relationships can be made explicit: 

• among requirements at the same process abstraction level (Figure 1), 
• between requirements at different process abstraction levels (Figure 2),  
• among scenarios at the same process abstraction level (Figure 1),  
• between scenarios at different process abstraction levels (Figure 2), 
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• between requirements and scenarios at the same process abstraction level (Figures 1, 2 
and 3) 

• among requirements at the same level of formality (Figure 3) 
• between requirements and scenarios at the same level of formality (Figure 3). 

informal 
requirements

informal 
scenarios

refined informal 
requirements

refined informal 
scenarios

    process  
abstraction  
      level 1

    process  
abstraction  
      level n

semi-formal 
requirements

semi-formal 
scenarios

formal 
requirements

formal 
scenarios

refined formal 
requirements

refined semi-formal 
requirements

refined semi-formal 
scenarios

refined formal 
scenarios

     process 
refinement 
    relations

relations between 
requirements and scenarios

 
Figure 3. Traceabilit y relations 

These relationships are often adequately specified using hyperlinks. This offers traceabilit y; 
i.e., relating relevant requirements and scenarios as well as the possibilit y to ‘ jump’ to 
definitions of relevant requirements and scenarios. Thus requirements and scenarios resulting 
from an extensive case-study have been placed in a hyperlinked structure (Herlea, Jonker, 
Treur and Wijngaards, 1998); see Figure 3, which combines Figures 1 and 2. 

4.2 Traceability relations for the example 

The diagram shown in Figure 3 can be used to depict the current relationships of the 
requirements and scenarios. In Figure 4 the relationships are depicted which are explained in 
Section 2, right up to the point when R1b.2 is determined to be incorrect. In this figure 
alternative reformulations are shown for both R1 and S1: for example R1 can be reformulated 
into R1.1, but also in two requirements R1a.1 and R1b.1. The following relationships between 
requirements and scenarios hold (not depicted in Figure 4): 
 

requirement R1 is true in scenario S1 
requirement R1.1 is true in scenario S1.1 
requirement R1a.1 is true in scenario S1a.1 (not shown) 
requirement R1b.1 is true in scenario S1b.1 (not shown) 
requirement R1b.2 is true in scenario S1.2 
requirement R1b.2 is true in scenario S4.2 (unwanted scenario) 
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Figure 4. Traceability relationships depicting the situation when R1b.2 is determined to be incorrect. 

 
After the discovery of the incorrect requirement R1b.2 a number of requirements is 
reformulated, resulting in the situation depicted in Figure 5. The requirements R1.2, R1b.3 and 
R1b.4 replace requirements R1.1, R1b.1 and R1b.2 of Figure 4, respectively. The following 
relationships between requirements and scenarios hold in Figure 5: 
 

requirement R1 is true in scenario S1 
requirement R1.2 is true in scenario S1.1 
requirement R1a.1 is true in scenario S1a.1 (not shown) 
requirement R1b.3 is true in scenario S1b.1 (not shown) 
requirement R1b.4 is true in scenario S1.2 
requirement R1b.4 is not true in scenario S4.2 (unwanted scenario). 
 
 

process 
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formal
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Figure 5. Traceability relationships depicting the correct requirements and scenarios. 

 
 
Figure 6 depicts the relations between requirements and scenarios at different levels of 
process abstraction. As shown, requirement R1.2 at process abstraction level 1 is refined into 
requirements R1int.1, R1acta.1, and R1actb.1 at process abstraction level 2. The same holds for 
the set of requirements consisting of R1a.1 and R1b.3: these are refined by the same set of 
requirements as R1.2. The scenarios S1a.1 and S1b.1 at process abstraction level 1 are refined 
by the scenarios Sinta.1 and S1intb.1 at process abstraction level 2, respectively. At process 
abstraction level the semi-formal scenarios S1inta.1 and S1intb.1 are reformulated into the 
formal scenarios S1inta.2 and S1intb.2, respectively. 
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Figure 6. Traceabilit y relationships for two levels of process abstraction. 

 

4.3 Traceability relations and verification 

Verification of requirements and scenarios is facilit ated by keeping track of traceabilit y 
relations. Traceabilit y relations over process abstraction levels (vertical direction in Figure 3) 
enable a compositional approach to verification: requirements and scenarios at a specific 
process abstraction level are verified in terms of requirements and scenarios at the next 
(lower) process abstraction level (Cornelissen, Jonker and Treur, 1997). Requirements and 
scenarios which are not further decomposed in requirements and scenarios at a lower process 
abstraction level are considered to be ‘primitive’ , and need to be verified in the specification 
of the system. Ideally these requirements and scenarios are easier to verify than the more 
complex, broadly stated requirements and scenarios higher up in the proces abstraction 
levels.  
 

Example of ‘vertical’ verification. 
When requirements R1int.1, R1acta.1 and R1actb.1 are all fulfilled, then it can be concluded that 
requirement R1.2 is also fulfilled. 

 
Traceabilit y relations among requirements and scenarios at one process abstraction level 
(horizontal direction in Figure 3) enable verification of requirements and scenarios in terms 
of each other. Scenarios can be employed to verify requirements, requirements can be 
employed to verify scenarios, isolated requirements and scenarios can be detected, et cetera. 
 

Examples of ‘horizontal’ verification. 
When the formal scenario S1.2 is fulfilled, then it can be concluded that the semi-formal scenario 
S1b.1 is also fulfilled. 
The scenario S2 is an ‘isolated’ scenario: it is not related to any requirement. 
The informal scenario S2 is an ‘unreformulated’ scenario: it is not related to a semi-formal scenario. 
Verification of requirement R1b.2 against the (unwanted) scenarios (e.g., S4.2) caused the 
reformulation of that requirement, resulting in requirement R1b.3. 
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5 Discussion 

Requirements describe the required properties of a system (this includes the functions of the 
system, structure of the system, static properties, and dynamic properties). In applications to 
agent-based systems, the dynamics or behaviour of the system plays an important role in 
description of the successful operation of the system. Requirements specification has both to 
be informal or semi-formal (to be able to discuss them with stakeholders) and formal (to 
disambiguate and analyse them and establish whether or not a constructed model for a system 
satisfies them). Typical software requirements engineering practices are geared toward the 
development of a formal requirements specification.  
 Requirements Engineering is today a well-studied field of research within Software 
Engineering; e.g., (Davis, 1993; Sommerville and Sawyer, 1997; Kontonya, and 
Sommerville, 1998). In recent years requirements engineering for distributed and agent 
systems has been studied, e.g., in (Dardenne, Lamsweerde, and Fickas, 1993; Dubois, Du 
Bois, and Zeippen, 1995). The requirements specification language ALBERT II (Dubois, Du 
Bois, and Zeippen, 1995; Dubois, Yu, and Petit, 1998), based on real-time temporal logic, 
has been developed for the area of real-time distributed systems, but has been tuned to the 
agent perspective as well. Reusable requirements patterns play an important role. In 
(Dardenne, Lamsweerde, and Fickas, 1993; Darimont, and Lamsweerde, 1996; Lamsweerde, 
Darimont, and Letier, 1998) the KAOS approach to Requirements Engineering of composite 
systems is described. In this approach a requirement for the overall system is called a goal. 
What is called a requisite is a requirement on part of the dynamics controllable by a single 
agent or (given) environment component. Goal refinement is used to decompose goals into 
requisites via AND/OR graphs. This can be compared to our notion of requirements 
refinement over process abstraction levels. The term assumption is used to indicate requisites 
on (given) environmental components. 
 The process of making requirements more precise is supported by using both semi-formal 
and formal representations for requirements. Part of this process is to relate concepts used in 
requirements to input and output of the system. Since requirement specifications need 
system-related concepts, it has been shown how the acquisition and specification of 
requirements goes hand in hand with the acquisition and specification of ontologies. 
Examples of known properties (based on ontologies) that can be related to requirements are: 
properties of problem solving methods for diagnosis (Benjamins, 1993; Cornelissen, Jonker 
and Treur, 1997), properties of propose-and-revise problem solving methods (Fensel and 
Motta, 1998). 
 The formalisation of behaviour requirements has to address the semantics of the evolution 
of the system (input and output) states over time. In this paper the semantics of properties of 
compositional systems is based on the temporal semantics approach, which can be found in 
the development of a compositional verification method for knowledge-intensive systems; 
for diagnostic process models see (Cornelissen, Jonker and Treur, 1997); for co-operative 
information gathering agents, see (Jonker and Treur, 1998); for negotiating agents, see 
(Brazier, Cornelissen, Gustavsson, Jonker, Lindeberg, Polak and Treur, 1998). By adopting 
the semantical approach underlying the compositional verification method, a direct 
integration of requirements engineering with the specification of properties of problem 
solving methods and their verification could easily be established. 
 The temporal trace language TTL used in our approach is much more expressive than 
standard or extended modal temporal logics as described, for example, in (Fisher, 1994; 
Clarke, Grumberg, and Peled, 2000; Manna and Pnueli, 1995; Stirling, 2001), in a number of 
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respects. In the first place, it has order-sorted predicate logic expressivity, whereas the 
standard temporal logics are propositional. Secondly, the explicit reference to time points and 
time durations offers the possibilit y of modelli ng the dynamics of real-time phenomena, 
which may be useful for the development of knowledge-based systems for real-time 
applications, just as the languages ALBERT II and KAOS discussed above are. 
 Third, the possibilit y to quantify over traces allows for specification of more complex 
dynamics. As within most temporal logics, reactiveness and pro-activeness properties can be 
specified. In addition, in our language also properties expressing different types of adaptive 
behaviour can be expressed. For example an adaptive property such as ‘exercise improves 
skill ’ , or ‘ the better the experiences, the higher the trust’ ( trust monotonicity) which both are 
a relative property in the sense that it involves the comparison of two alternatives for the 
history. This type of adaptive property can be expressed in our language, whereas in standard 
forms of temporal logic different alternative histories cannot be compared. The same 
difference applies to situation calculus (McCarthy and Hayes, 1969), event calculus 
(Kowalski and Sergot, 1986), and fluent calculus (Hölldobler and Thielscher, 1990). 
Therefore TTL is more suitable for requirements specification within the development of 
adaptive knowledge-based systems, than standard temporal logics, or KAOS, ALBERT II or 
these other calculi mentioned. 
 Fourth, in TTL it is possible to define local languages for parts of a system. Especially in a 
compositional approach to Knowledge Engineering as in DESIRE, the distinctions between 
components, and between input and output and internal languages are crucial, and are 
supported by the language, which also entails the possibili ty to quantify over system parts and 
changing system parts over time; for example, this allows for specification of system 
configuration modification over time; cf.  (Dastani, Jonker and Treur, 2001). 
 For some example systems requirements and scenarios have been elicited, analysed, 
manipulated, and formalised. The lessons learned from these case studies are: 

• The process of achieving an understanding of a requirement involves a large number of 
different formulations and representations, gradually evolving from informal to semi-
formal and formal. 

• Scenarios and their formalisation are, compared to requirements, of equal importance. 
• Categorisation of requirements on input, output and function or behaviour 

requirements, and distinguishing these from assumptions on the environment clarifies 
the overall picture. 

• Grouping requirements and scenarios in clusters gives a more global insight. 
• Keeping track on the various relations between different representations of 

requirements, between requirements and clusters, between requirements and scenarios, 
and many others, is supported by hyperlink specifications within a requirements 
document. 

 
In current and future research, further integration of requirements engineering in the 
compositional design method for multi -agent systems, DESIRE and, in particular, in its 
software environment is addressed. 
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